The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield.
نویسندگان
چکیده
Sucrose non-fermenting-1 (SNF1)-related protein kinases (SnRKs) take their name from their fungal homologue, SNF1, a global regulator of carbon metabolism. The plant family has burgeoned to comprise 38 members which can be subdivided into three sub-families: SnRK1, SnRK2, and SnRK3. There is now good evidence that this has occurred to allow plants to link metabolic and stress signalling in a way that does not occur in other organisms. The role of SnRKs, focusing in particular on abscisic acid-induced signalling pathways, salinity tolerance, responses to nutritional stress and disease, and the regulation of carbon metabolism and, therefore, yield, is reviewed here. The key role that SnRKs play at the interface between metabolic and stress signalling make them potential candidates for manipulation to improve crop performance in extreme environments.
منابع مشابه
Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملGsAPK, an ABA-Activated and Calcium-Independent SnRK2-Type Kinase from G. soja, Mediates the Regulation of Plant Tolerance to Salinity and ABA Stress
Plant Snf1 (sucrose non-fermenting-1) related protein kinase (SnRK), a subfamily of serine/threonine kinases, has been implicated as a crucial upstream regulator of ABA and osmotic signaling as in many other signaling cascades. In this paper, we have isolated a novel plant specific ABA activated calcium independent protein kinase (GsAPK) from a highly salt tolerant plant, Glycine soja (50109), ...
متن کاملDetection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells.
Plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK) represent an emerging class of important regulators of metabolic and stress signalling. The catalytic alpha-subunits of plant Snf1-related kinases (SnRKs) interact in the yeast two-hybrid system with different proteins that share conserved domains with the beta- and gamma-subunits...
متن کاملSucrose non-fermenting related kinase enzyme is essential for cardiac metabolism
In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day ...
متن کاملIdentification of Sucrose Non-Fermenting–Related Kinase (SNRK) as a Suppressor of Adipocyte Inflammation
In this study, the role of sucrose non-fermenting-related kinase (SNRK) in white adipocyte biology was investigated. SNRK is abundantly expressed in adipose tissue, and the expression level is decreased in obese mice. SNRK expression is repressed by inflammatory signals but increased by insulin sensitizer in cultured adipocytes. In vivo, adipose tissue SNRK expression can be decreased by lipid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2011